® WHITEPAPER SGNL.AI Sgnl .IIIII
L)

CAEP Best
Practices

Atul Tulshibagwale, CTO, SGNL

01 02 03

Overview Basics and why it is important SSF Concepts

04 05 06

How does it work Continuous security paradigm Implementation tips
o7 08

Common use cases Example: Implementing session

revocation in an application

https://sgnl.ai/

® WHITEPAPER

01

SGNL.AI

sgnl '||||'

Overview

CAEP and the underlying SSF standards are critical to implementing the continuous security paradigm and,
ultimately, Continuous Identity at scale. This white paper describes the standards, what they do, and why
they are important; the concepts embodied in the standards; the continuous security paradigm; and tips to

implementing CAEP.

02

Basics

Before we get into the details, let’s take a look at
what these standards are, and why they are
important.

What are CAEP, SSF, and related standards?

The Continuous Access Evaluation Protocol or
Profile (CAEP) is a way for independent services
that share the same logged-in users to inform each
other of changes to the properties of their logged-in
sessions. Individual services can define policies
about how such information should be used. For
example, if a user changes their password at an
identity provider (IdP), then it can send the CAEP
event “credential changed” to other services, which
can then determine whether the user needs to be
re-authenticated or can operate partially without re-
authentication.

CAEP is built on the Shared Signals Framework
(SSF), which is a generic mechanism to
asynchronously exchange information about
common subjects. CAEP and SSF are open
standards developed by the OpenlID Foundation’s
Shared Signals Working Group (SSWG). The CAEP
specification defines a set of session management-
related events on top of SSF. Similarly, other
standards such as RISC (Risk Incident Sharing and
Coordination), which defines a set of events for
account security, and SCIM Events, which defines a
set of events for account management, can leverage
SSF. RISC is developed in the OpenID SSWG, and
SCIM Events is being developed in the IETF OAuth
working group.

Why is this important?

Users are most commonly logged in via single sign-
on, which leverages federated identity standards
like OpenID Connect and SAML. Once the user logs
in to a third-party application (such as a SaaS
service), the ability to inform of any changes to that
logged-in user’s properties is severely limited.
Organizations have policies around what device
posture is required for a user to access certain
services via single sign-on, what to do when a user
changes their password (or other credentials), and
other such conditions. However, in federated
identity protocols, the only time available to enforce
such policy is when the user logs in.

So, to achieve such policy compliance, sometimes
companies use short-lived tokens, so that the user is
bounced back to the identity provider every hour or
so. Even if the user doesn’t have to log in again, the
identity provider can check the policy and deny
access if the policy check fails. This type of “polling
behavior” used to be thought of as the only way to
achieve “continuous authentication” before CAEP. It
was unnecessarily chatty and caused a poor user
experience because the browser would have to
reload the application every time the user was
bounced back and forth. CAEP is an open standard
that enables such dynamic updates to be
communicated where they are required, so that
short-lived tokens are no longer required. This is
described in the SGNL blog: CAEP Use Case:
Increase Token Lifetime.

https://sgnl.ai/
https://sgnl.ai/2024/08/caep-use-case-increase-token-lifetime/
https://sgnl.ai/2024/08/caep-use-case-increase-token-lifetime/

® WHITEPAPER SGNL.AI

03

sgnl '||||'

SSF Concepts

© Transmitters and Receivers: The shared
signals framework considers individual
systems to be either Transmitters or
Receivers. A system may be both, but these
aspects are independent of each other.

© Events: Events are the unit of
communication. Transmitters send events to
Receivers. Each Event is a Security Event
Token (SET), which is itself a form of a signed
JSON obiject, called JWT (JSON Web Token).

© Event Types: Each event has a type, which is
one of a defined set of types in one of the
specifications, such as CAEP, RISC, or SCIM
Events. It is possible for other specifications
to define new event types, or for parties to
use custom event types between themselves.
Custom event types should be avoided
because they can lead to incompatibility and
ambiguity in what they mean.

04

Subjects: A subject is what an event is about.
The subject can be expressed as a simple
subject (e.g.,email) or a complex subject
(e.g.,a specific session identifier, on a specific
device for a specific user).

Streams: A stream contains events of specific
event types, about specific subjects, and
delivered in a specific way (push or poll)
between a Transmitter and Receiver. Streams
have specific mechanisms for how they are
created, updated, controlled (paused,
disabled, enabled), and verified.

Transmitter Configuration Metadata: The
Transmitter defines an API by which
Receivers can call various functionality about
it. The Transmitter Configuration Metadata
informs the Receiver about all properties of
the Transmitter in order to be able to
communicate with it.

How does it work

The general architecture is as follows:

JWT - a signed JSON object

SSF ASYNC TRANSPORT Security Event Tokens (SETs) SSF ASYNC TRANSPORT
- add "events" to JWT

CAEP - specific event types
for session management

Shared Signals
Framework (SSF) e EE—— Framework (SSF)
Transmitter STREAM CONTROLS Receiver

Shared Signals

https://sgnl.ai/

® WHITEPAPER SGNL.AI Sgnl .IIIII
L)

As seen above, the thing that is sent by a Transmitter to a Receiver is a specific form of JWT called a SET,
which is further profiled in the form of a CAEP event. The stream controls enable the Receiver and
Transmitter to negotiate the event types that go into the stream, and the subjects about which the events
are. It also enables the Transmitter and Receiver to control the status of the stream and request verification.

The sequence of events is described in the diagram below:

Transmitter Receiver

1. RECEIVER CREATES A STREAM

2. TRANSMITTER PUSHES EVENTS

2. RECEIVER POLLS FOR EVENTS

3. TRANSMITTER UPDATES STREAM (PAUSE / RESTART)

4. RECEIVER PAUSES OR RESTARTS STREAM
5. RECEIVER REQUESTS VERIFICATION EVENT
6. TRANSMITTER SENDS VERIFICATION EVENT |—»

In addition to the above, a Receiver may add or remove subjects at any time by calling the relevant endpoint
of the Transmitter’s APIl. Streams may also be set up such that all subjects are included by default.

https://sgnl.ai/

® WHITEPAPER

05

SGNL.AI

sgnl '||||'

The Continuous Security
Paradigm (CSP)

SSF is a foundational framework that enables the
higher level security paradigm called the
“Continuous Security Paradigm” or CSP. CSP
proposes an architecture wherein independent
services asynchronously exchange data that is
relevant to making access decisions. Such
asynchronous exchange of data provides the up-to-
date context that is essential to good access
decisions.

CSP is an important shift in security thinking; It
recognizes the architectural change in how
enterprises are organized, and defines how security
can work in that context. CSP is also a foundational
way of thinking to deliver on Continuous Identity in
enterprise environments.

Network of nodes

Modern organizations typically use a number of
cloud services, including SaaS, PaaS, and laaS
services. Your laaS platforms host multiple systems
and applications. Each one of these services
(including your own systems and applications) can
be thought of as a node in a network. Each node has
relative autonomy in its operation and has
management concerns of its own, but as an
enterprise, you want it to work and be managed in
coordination with other systems that you run.

Zero trust

Your users are located anywhere on the globe, and
work from their individual homes, on the road, or in
offices, and need to access cloud-based services.
These services are themselves globally distributed;
it is natural to have users connect directly to such
cloud services without going through any specific
network hops. A zero-trust architecture—one in
which every access is verified independently and
directly by the service being accessed—is natural to
enforce access security in such environments. This
is because any network security architecture places
unnecessary hops and, as a consequence, points of
failure. Network components also cannot

incorporate any context in an access decision, so
their decisions are necessarily based on static role
memberships and network properties.

Access tokens

In a zero-trust architecture, access is enforced at
every access request, based on information that is
verified at the time of access. In real life, this means
verifying the access token that gives the user the
ability to access a specific service. Access tokens
are issued by a combination of your organization’s
identity provider and the specific system a user is
trying to access. The IdP issues tokens using
federated identity protocols such as OpenlD
Connect (OIDC) or SAML, whereas the individual
systems may use proprietary or JWT format OAuth
access tokens for their individual use. The tokens
are either stored as cookies in browsers or as access
tokens in mobile apps.

The access tokens have a validity lifetime of their
own, determined by your organization by
configuring the individual system that issues the
tokens. Security practitioners have to decide
whether the access token should be long-lived (e.g.
24 hours), or short-lived (e.g. minutes to an hour).
This is typically determined by how often a user’s
access posture is likely to change. Keeping a short
token lifetime forces the user to have to go back to
the IdP to re-issue the federated identity token,
which is disruptive to the user’s experience and can
place an unacceptably high burden on the IdP.
Therein lies the dilemma of the security practitioner:
If you make token lifetimes too long, security
suffers, and if you reduce token lifetimes, user
experience and system reliability suffer.

Access decisions

In a zero-trust architecture, access decisions should
ideally be made independently for every access.
Instead, systems often end up using token validity
as a quick means of verifying access, because that
seems like a good way to do a low-latency check
that doesn’t require a lot of complex computation
that might go into an access decision.

But let’s take a look at how it should really work:

https://sgnl.ai/
https://idpro.org/continuous-security/
https://sgnl.sgnl.my/2025/07/what-is-continuous-identity/

® WHITEPAPER

© Contextis distributed: Each node has your
organization’s data, and data from any node
could be required to make access decisions at
any other node. When a user (or an API call)
makes a request within any node, it needs a
near-instantaneous access decision. However,
the data required to deliver that access decision
may be drawn from other nodes. Expecting all
such nodes to work synchronously in real-time
to provide an access decision with ultra-low
latency is virtually impossible. Consider the
following examples:

© Consumer use case: A customer of a bank
has logged in and is requesting to transfer
money from one of their accounts. The
application responsible for executing the
transfer needs data from the fraud alerting
system to know whether the user’s login
session is showing any signs of compromise,
such as session hijacking or credentials
compromise. An independent fraud
detection system can compute this
information, but it needs access to other
systems such as the identity provider,
geolocation, etc., to do such computation.
So, when the transfer execution system is
invoked in order to execute the transfer, it is
unrealistic to expect it to reach out to the
fraud detection system, and then have that
reach out to the IdP and geolocation
services to compute all this in real-time. It
also doesn’t work because each system may
have differing availability and latency
characteristics.

© Enterprise use case: An employee wishes to
make a change in the configuration of your
organization’s laaS platform. This is a highly
sensitive change, so your organization has
decided that this should be allowed only if:

1. There is a support case that is approved
for configuration changes in production.

2. The user is assigned as the engineer on
that case.

3. The user is currently on duty as an on-
call engineer.

SGNL.AI

sgnl '||||'

4. The useris in the “site reliability
engineering” team that is permitted to
make such changes.

5. The useris not on leave at this time.

6. The useris coming from a PC that does
not have any incidents reported, and is in
good management posture.

All of these pieces of data are in different
systems (e.g.,ticketing system, on-call
scheduling system, enterprise directory, HR,
XDR, etc.). All of this data influences the
access decision.

Achieving continuous security

To achieve continuous security in a zero-trust
environment, you need to make these access
decisions for every access request at every node,
and you need to do that in a reliable, low-latency
way! Keep in mind that in large organizations,
individual systems may have hundreds of thousands
of access requests every second.

So, while it is impossible to rely on all this
distributed data to make such highly reliable, low-
latency access decisions, that doesn’t mean
continuous security is impossible to achieve. The
continuous security paradigm makes this possible.
The idea is actually quite simple:

© Always make instantaneous access decisions
based on data available at the individual node. In
its simplest form, this can be validating an
access token.

© Ensure that data required for making access
decisions at any node is available as soon as it
changes, regardless of which node that data
originates from. This can be achieved using
asynchronous communication of such changes.

© Ifthe data you have changes, you need to ensure
it is communicated to the nodes that need it in
order to make decisions.

https://sgnl.ai/

® WHITEPAPER

SGNL.AI Sgnl .IIII!

If you are simply relying on access tokens, you need to make sure that nodes that rely on the validity of the
access token know in advance if the access token should be considered invalid due to changes in other
systems (e.g.,a user being terminated). That way, when a user shows up with that token, it is immediately

discarded and access is denied.

Achieving continuous security

CSP envisions three planes:

The Continuous Security Paradigm

Control Plane
configuring the trust topology

Events Plane
asynchronous context propagation

Data Plane

real-time access decisions

Which events to receive from whom?
Which events to send to whom?
What is the frequency or urgency of communication?

Deliver events reliably
Receive and acknowledge event receipt

Verify stream liveness

Allow or deny access to specific resources

Provide low-latency response to access queries
Ultra high reliability

Of this, the Control Plane and Events Plane can be implemented using SSF.

https://sgnl.ai/

® WHITEPAPER SGNL.AI

sgnl '||||'

06

Bringing CSP to reality: Implementing CAEP

Establishing the trust topology

To implement CSP, one needs to first establish the trust topology between the nodes in your network:

o1 02 03

Which events need to be sent by a Which events should a particular How frequently should the events be
particular node to another particular node expect from another particular sent?
node? node?

© Determining events to send and receive: SSF © Determining policy: CAEP is a non-prescriptive

can help with the first two things:

e As an SSF Transmitter, you can specify which
events you support through the Transmitter
Configuration Metadata

e As an SSF Receiver, you can request the
creation of a stream from the Transmitter,
which specifies the types of events that you
want (i.e., the events_requested
parameter in the stream creation request.
The Transmitter will commit to sending a
subset of these events in the
events_delivered parameter of the
response. As an SSF Receiver, you can
decide whether or not the event set is
sufficient for you, or if you cannot continue.
If the event set is insufficient and you cannot
continue, then you should delete the stream
and take appropriate error handling steps.

© Establishing trust: A good way to protect the

SSF Transmitter APl is by using OAuth. You can
configure your SSF Transmitter to trust an
OAuth Server, and specify the OAuth Server and
token scopes that you require in an “OAuth
Protected Resource Metadata” (OPRM)
document. See RFC 9728 for more details. If you
are developing an SSF Receiver, then in order to
set up the trust, you need to obtain a token from
the OAuth server that you can present to the
Transmitter when making SSF API calls. This is
typically done in an admin console, where the
user who can obtain tokens with the appropriate
scopes from the OAuth server is already logged
into your SSF Receiver.

standard. CAEP events signify changes at the
Transmitter, but do not command or instruct the
Receiver to take a specific action. This means
that the Receiver has to implement its own
policy to determine how to handle the events.
Part of establishing the trust topology is to
define what each node must do in response to
receiving a specific type of event from another
node. The policy may depend upon a number of
factors:

e The event type
® The sender of the event

¢ The subject of the event

e Other data related to the subject, event, and
the resources it might impact.

https://sgnl.ai/
https://datatracker.ietf.org/doc/html/rfc9728/

® WHITEPAPER

Sending events

As an SSF Transmitter, once you have committed to
sending events to a Receiver, you need to ensure the
timely delivery of events. You need to determine the
following:

e How will you determine that an event needs to
be sent to a Receiver? Typically, you will have
internal event triggers (e.g.,an APl method being
called, or an internal queue receives an item that
results in the need to send the event). However,
in some cases, you might have to monitor a data
source in order to determine whether a value has
changed and, as a result, it needs to be
communicated. In the latter case, you need to
establish a polling cadence in order to send
those events.

¢ You will need to determine a service level
objective (SLO) for when the events will be sent.
This SLO may or may not need to be
communicated to the Receiver, but it can be
something that you can use to monitor the
health of your Transmitter.

¢ Depending upon the delivery methods your
Transmitter supports, you will need to have the
appropriate queueing infrastructure for poll
delivery of events, or the appropriate retry logic
in case a push delivery fails.

Propagating events

An SSF Receiver may also generate events as a
result of receiving one. For example, if a policy
engine receives an event from an Extended
Detection and Response (XDR) system about an
increase in a user’s risk, it may generate session
revocation events to all applications that depend on
it for such signaling. Some of those applications
may generate events of their own in response, so
one has to make sure that any node in the network
doesn’t take multiple actions in response to the
same originating event. This is achieved through
correlating the txn claim in SSF events. If your node
generates events in response to receiving an event,
then you must copy the txn value from the
incoming event to the outgoing events you
generate. As a result, if you receive an event with a
txn value that you have already processed, you do
not need to process that event.

SGNL.AI

sgnl '||||'

Receiving events

As an SSF Receiver, you need to ensure that you can
reliably receive events and take the appropriate
action upon receiving them. The receipt of the event
serves as the internal trigger for other actions that
you need to take, e.g.,updating a database or cache.
You need to respond appropriately to the
Transmitter to indicate that you have received the
event. You need to ensure an audit mechanism to
verify that you have processed every event that you
have received, in order to make sure that incoming
events aren’t being dropped. This can be a good
measure to monitor your service’s health.

You should also request verification events
periodically to monitor the stream liveness. You can
provide appropriate alerting if the stream is
determined to be no longer active.

https://sgnl.ai/

® WHITEPAPER

o7

SGNL.AI

sgnl '||||'

Common use cases

There are a number of use cases being implemented in the industry today. They include:

Session revocation

An application or an identity service (such as a
single sign-on identity provider, a policy engine,
or an ldentity Governance and Administration
(IGA) service) may communicate that a particular
user or a particular session of a user is terminated
at their end, as indicated by the subject of the
event. The Receiver of the event may:

e Terminate their sessions for the same user or
if they can, terminate the specific session.

e Evaluate whether the user’s session needs to
be terminated based on other data that they
have received about the user. This can happen
when an application indicates abnormal
activity to a policy engine, and the policy
engine evaluates whether similar activity,
device risks, or user risks have been flagged
by other services for the same user. Based on
the result of the evaluation, the Receiver may
terminate their own session, and transmit
session revocation events to other Receivers.

Device compliance change

Services that manage devices for users on behalf
of their employers watch those devices for
compliance with the enterprise policy. Devices
managed using such services typically
periodically check in with the service, whereby
the service can check the device “posture”. A
posture that violates policy is understood by the
device management service at the time of check-
in, or if the device fails to check in. Using the
CAEP device-compliance-change event, the
device management service can signal both the
change of a device from being compliant to non-
compliant or vice-versa. The subject of this event
could just be the user (in which case it is assumed
to apply to all devices the user is using), or it
might include a specific device (either in addition
to or instead of the user identity). The Receivers
of this event may:

e Terminate user access to their service, or

¢ Permit only limited access until the device
becomes compliant again.

A Receiver may be informed of the user’s device
being used in the session at the time of session
establishment. In this case, the Receiver can
correlate the device identifier in the device-
compliance-change event subject to the identifier
it has. If not, the Receiver can take a defensive
position of assuming the user’s device (which is
unknown to the Receiver) has become non-
compliant. To ascertain compliance again, the
Receiver in that case will have to re-authenticate the
user, with the assumption that the identity provider
will verify the device compliance at the time of re-
authentication.

Credential change

A user may change their password or change the
strong authentication mechanism, device, or phone
number. Any of these events can result in the
service managing the user’s credential (typically the
identity provider, or credential provider) can signal
the CAEP credential-change event. Receivers
of this event may:

e Force the user to re-authenticate

¢ Permit limited access until the user re-
authenticates

Risk level change

An application being used by the user, a monitoring
service, or an XDR service can detect that the user’s
risk has changed. This could be based on a variety of
factors, such as user behavior, device risk,
environmental risk (i.e., the user is in an untrusted
location), etc. The service that detects such change
can send the risk-level-change event. A Receiver
may take appropriate action, such as:

e Terminate the user session
o Permit limited access

¢ Add the event to its own risk assessment, and
determine the appropriate action on cumulative risk

https://sgnl.ai/

® WHITEPAPER

08

SGNL.AI

sgnl '||||'

Example: Implementing
session revocationin an
application

Application description

An application is composed of a globally distributed
set of nodes. It uses access tokens as a means of
authenticating users. The access tokens identify the
user and their permissions within the application.
The application uses an external IdP to issue ID
Tokens, which it then converts to its own access
tokens for session identification. The application
does not persist a list of logged-in users in its
database, but assumes that anyone presenting a
valid access token is logged in (as long as the token
has not expired). The following picture illustrates
the application architecture:

App instance Region 1

App instance

Region 2

App instance

App instance Region 3

In the above diagram, the same user may at one
point in time access an app instance in one region,
whereas at some other point in time might access
an app instance in another region.

Session revocation event

The IdP supports CAEP and sends a
session_revoked event to the application when a
user’s session is revoked at the IdP. The application
policy is to revoke its local session when that
happens. The content of the session revoked event
from the IdP is:

JSON

{
"iss": "https://idp.example.com/12345/",
"jti": "24c63fb56e5a2d77abb512616ca9fa24",
"iat": 1615305159,
"aud": "https://myorg.example/caep",
"txn": "8675309",

"sub_id": {
"format": "email",
"email": "user@idp.example"

},
"events": {
"https://schemas.openid.net/secevent/
caep/event-type/session-revoked": {
"reason_admin": {
"en": "Policy Violation: CO7T6E822"
},
"event_timestamp": 1615304991
}
}
}

https://sgnl.ai/

® WHITEPAPER SGNL.AI Sgnl .IIIIl
L)

Architecture for handling session revocation events

Since the application has no persistent record of a user logging in, when the application receives the
session_revoked event, it has no way to correlate that with existing login sessions. To ensure it can
revoke live sessions, it creates a distributed cache, which has a read replica at every node where the
application is running. It has one main replica where it receives CAEP events. This is propagated to all the
read replicas to achieve eventual consistency.

This architecture is described below.

Region 1

App instance
Cache read replica

Region 2
App instance
Cache App’s
Cache read replica | ¢—=—— main «— CAEP
replica receiver
App instance

Region 3

App instance
Cache read replica

As seen in the diagram above, the CAEP Receiver (an SSF Receiver used to receive CAEP events) of the
application inserts the received event into the main replica of the cache. This gets propagated to the read
replicas as soon as possible to reach eventual consistency. Each entry in the cache can be the entire
session_revoked event, orit could be just the relevant portion of the event, which is the “issued at time”
and the subject identifier. For example, the cache item can be:

JSON

"iat": 1615305159,
"id": "user@idp.example"

https://sgnl.ai/

® WHITEPAPER

08

SGNL.AI

sgnl '||||'

Application logic

When any node within the application receives an
access token, it verifies that the local copy of the
cache does not contain an event for that user. If it
does, then it compares the “issued at time” of the
access token with the iat of the cache entry. If the
access token is older than the entry in the cache,
then it rejects the request as unauthorized. The
normal application logic for handling unauthorized
users then kicks in to guide the user through the
login process again.

Extending to other event types

The above example illustrates how session
revocation may be implemented. To extend to other
event types, say the application’s permissions need
to be changed based on a token_claims_change
event received from an IdP, then the architecture
and logic remain the same, but the cache entries are
extended to contain an “event type”, and the
relevant details (e.g.,updated permissions) that are
specific to that event type. So an entry created as a
consequence of receiving a
token_claims_change event can be:

JSON
{
"iat": 1615305159,
"id": "user@idp.example",
"https://schemas.openid.net/secevent/caep/
event-type/token-claims-change" : {
"permissions": ["admin", "user"]

}
}

After this is implemented, the application will
override any permissions within the access token
with the permissions defined in the cache, if a cache
entry is found. That way, if the user’s permissions
have changed within the duration of a session, the
updated permissions will be effective
instantaneously across the application.

https://sgnl.ai/

ABOUT SGNL

SGNL is the only enterprise platform purpose-built for Continuous
Identity—trusted by Fortune 500 enterprises worldwide to eliminate
standing access to cloud environments, code, and critical
applications.

SGNL delivers continuous, context-aware protection for sensitive
data, infrastructure, cloud workloads, and applications, and now
extends that protection to Al through the SGNL MCP Security
Gateway—enforcing real-time policies on Al agent actions. By
centralizing context, real-time enforcement, and enterprise-wide
orchestration through open standards like CAEP and the Shared
Signals Framework, SGNL enables Zero Standing Privilege across
the entire identity footprint and makes Zero Trust an operational
reality.

Gartner
SGNL named a Cool Vendor in the 2025 Gartner® ool
Cool Vendors™ in Identity-First Security EISQNSDOR

REQUEST A DEMO

https://sgnl.ai/demo/

