
WHITEPAPER SGNL.AI

CAEP Best
Practices
Atul Tulshibagwale, CTO, SGNL

01

Overview

02

Basics and why it is important

03

SSF Concepts

04

How does it work

05

Continuous security paradigm

06

Implementation tips

07

Common use case�

08

Example: Implementing session

revocation in an application

https://sgnl.ai/

WHITEPAPER SGNL.AI

01

Overview
CAEP and the underlying SSF standards are critical to implementing the continuous security paradigm and,

ultimately, Continuous Identity at scale. This white paper describes the standards, what they do, and why

they are important; the concepts embodied in the standards; the continuous security paradigm; and tips to

implementing CAEP.

02

Basics
Before we get into the details, let’s take a look at

what these standards are, and why they are

important.

What are CAEP, SSF, and related standards?

The Continuous Access Evaluation Protocol or

Profile (CAEP) is a way for independent services

that share the same logged-in users to inform each

other of changes to the properties of their logged-in

sessions. Individual services can define policies

about how such information should be used. For

example, if a user changes their password at an

identity provider (IdP), then it can send the CAEP

event “credential changed” to other services, which

can then determine whether the user needs to be

re-authenticated or can operate partially without re-

authentication�

CAEP is built on the Shared Signals Framework

(SSF), which is a generic mechanism to

asynchronously exchange information about

common subjects. CAEP and SSF are open

standards developed by the OpenID Foundation’s

Shared Signals Working Group (SSWG). The CAEP

specification defines a set of session management-

related events on top of SSF. Similarly, other

standards such as RISC (Risk Incident Sharing and

Coordination), which defines a set of events for

account security, and SCIM Events, which defines a

set of events for account management, can leverage

SSF. RISC is developed in the OpenID SSWG, and

SCIM Events is being developed in the IETF OAuth

working group.

Why is this important?

Users are most commonly logged in via single sign-

on, which leverages federated identity standards

like OpenID Connect and SAML. Once the user logs

in to a third-party application (such as a SaaS

service), the ability to inform of any changes to that

logged-in user’s properties is severely limited.

Organizations have policies around what device

posture is required for a user to access certain

services via single sign-on, what to do when a user

changes their password (or other credentials), and

other such conditions. However, in federated

identity protocols, the only time available to enforce

such policy is when the user logs in¯

So, to achieve such policy compliance, sometimes

companies use short-lived tokens, so that the user is

bounced back to the identity provider every hour or

so. Even if the user doesn’t have to log in again, the

identity provider can check the policy and deny

access if the policy check fails. This type of “polling

behavior” used to be thought of as the only way to

achieve “continuous authentication” before CAEP. It

was unnecessarily chatty and caused a poor user

experience because the browser would have to

reload the application every time the user was

bounced back and forth. CAEP is an open standard

that enables such dynamic updates to be

communicated where they are required, so that

short-lived tokens are no longer required. This is

described in the SGNL blog:

.

CAEP Use Case:

Increase Token Lifetime

https://sgnl.ai/
https://sgnl.ai/2024/08/caep-use-case-increase-token-lifetime/
https://sgnl.ai/2024/08/caep-use-case-increase-token-lifetime/

WHITEPAPER SGNL.AI

03

SSF Concepts

Transmitters and Receivers: The shared

signals framework considers individual

systems to be either Transmitters or

Receivers. A system may be both, but these

aspects are independent of each other.

Events: Events are the unit of

communication. Transmitters send events to

Receivers. Each Event is a Security Event

Token (SET), which is itself a form of a signed

JSON object, called JWT (JSON Web Token).

Event Types: Each event has a type, which is

one of a defined set of types in one of the

specifications, such as CAEP, RISC, or SCIM

Events. It is possible for other specifications

to define new event types, or for parties to

use custom event types between themselves.

Custom event types should be avoided

because they can lead to incompatibility and

ambiguity in what they mean.

Subjects: A subject is what an event is about.

The subject can be expressed as a simple

subject (e.g.,email) or a complex subject

(e.g.,a specific session identifier, on a specific

device for a specific user).

Streams: A stream contains events of specific

event types, about specific subjects, and

delivered in a specific way (push or poll)

between a Transmitter and Receiver. Streams

have specific mechanisms for how they are

created, updated, controlled (paused,

disabled, enabled), and verified.

Transmitter Configuration Metadata: The

Transmitter defines an API by which

Receivers can call various functionality about

it. The Transmitter Configuration Metadata

informs the Receiver about all properties of

the Transmitter in order to be able to

communicate with it.

JWT - a signed JSON object

Security Event Tokens (SETs)

- add "events" to JWT

CAEP - specific event types

for session management

Shared Signals
Framework (SSF)

Transmitter

Shared Signals
Framework (SSF)

ReceiverStream controls

SSF Async Transport SSF Async Transport

04

How does it work
The general architecture is as follows:

https://sgnl.ai/

WHITEPAPER SGNL.AI

As seen above, the thing that is sent by a Transmitter to a Receiver is a specific form of JWT called a SET,

which is further profiled in the form of a CAEP event. The stream controls enable the Receiver and

Transmitter to negotiate the event types that go into the stream, and the subjects about which the events

are. It also enables the Transmitter and Receiver to control the status of the stream and request verification�

The sequence of events is described in the diagram below:

In addition to the above, a Receiver may add or remove subjects at any time by calling the relevant endpoint

of the Transmitter’s API. Streams may also be set up such that all subjects are included by default.

1. Receiver creates a stream

2. Receiver polls for events

4. Receiver pauses or restarts stream

5. Receiver requests verification event

2. Transmitter pushes events

3. Transmitter updates stream (pause / restart)

6. Transmitter sends verification event

or

ReceiverTransmitter

https://sgnl.ai/

WHITEPAPER SGNL.AI

05

The Continuous Security
Paradigm (CSP)

SSF is a foundational framework that enables the

higher level security paradigm called the

“ ” or CSP. CSP

proposes an architecture wherein independent

services asynchronously exchange data that is

relevant to making access decisions. Such

asynchronous exchange of data provides the up-to-

date context that is essential to good access

decisions*

CSP is an important shift in security thinking; It

recognizes the architectural change in how

enterprises are organized, and defines how security

can work in that context. CSP is also a foundational

way of thinking to deliver on in

enterprise environments.

Continuous Security Paradigm

Continuous Identity

Network of nodes

Modern organizations typically use a number of

cloud services, including SaaS, PaaS, and IaaS

services. Your IaaS platforms host multiple systems

and applications. Each one of these services

(including your own systems and applications) can

be thought of as a node in a network. Each node has

relative autonomy in its operation and has

management concerns of its own, but as an

enterprise, you want it to work and be managed in

coordination with other systems that you run.

Zero trust

Your users are located anywhere on the globe, and

work from their individual homes, on the road, or in

offices, and need to access cloud-based services.

These services are themselves globally distributed;

it is natural to have users connect directly to such

cloud services without going through any specific

network hops. A zero-trust architecture—one in

which every access is verified independently and

directly by the service being accessed—is natural to

enforce access security in such environments. This

is because any network security architecture places

unnecessary hops and, as a consequence, points of

failure. Network components also cannot

 incorporate any context in an access decision, so

their decisions are necessarily based on static role

memberships and network properties.

Access tokens

In a zero-trust architecture, access is enforced at

every access request, based on information that is

verified at the time of access. In real life, this means

verifying the access token that gives the user the

ability to access a specific service. Access tokens

are issued by a combination of your organization’s

identity provider and the specific system a user is

trying to access. The IdP issues tokens using

federated identity protocols such as OpenID

Connect (OIDC) or SAML, whereas the individual

systems may use proprietary or JWT format OAuth

access tokens for their individual use. The tokens

are either stored as cookies in browsers or as access

tokens in mobile apps

The access tokens have a validity lifetime of their

own, determined by your organization by

configuring the individual system that issues the

tokens. Security practitioners have to decide

whether the access token should be long-lived (e.g.

24 hours), or short-lived (e.g. minutes to an hour).

This is typically determined by how often a user’s

access posture is likely to change. Keeping a short

token lifetime forces the user to have to go back to

the IdP to re-issue the federated identity token,

which is disruptive to the user’s experience and can

place an unacceptably high burden on the IdP.

Therein lies the dilemma of the security practitioner:

If you make token lifetimes too long, security

suffers, and if you reduce token lifetimes, user

experience and system reliability suffer.

Access decisions

In a zero-trust architecture, access decisions should

ideally be made independently for every access.

Instead, systems often end up using token validity

as a quick means of verifying access, because that

seems like a good way to do a low-latency check

that doesn’t require a lot of complex computation

that might go into an access decision

But let’s take a look at how it should really work:

https://sgnl.ai/
https://idpro.org/continuous-security/
https://sgnl.sgnl.my/2025/07/what-is-continuous-identity/

WHITEPAPER SGNL.AI

Context is distributed: Each node has your

organization’s data, and data from any node

could be required to make access decisions at

any other node. When a user (or an API call)

makes a request within any node, it needs a

near-instantaneous access decision. However,

the data required to deliver that access decision

may be drawn from other nodes. Expecting all

such nodes to work synchronously in real-time

to provide an access decision with ultra-low

latency is virtually impossible. Consider the

following examples:

Consumer use case: A customer of a bank

has logged in and is requesting to transfer

money from one of their accounts. The

application responsible for executing the

transfer needs data from the fraud alerting

system to know whether the user’s login

session is showing any signs of compromise,

such as session hijacking or credentials

compromise. An independent fraud

detection system can compute this

information, but it needs access to other

systems such as the identity provider,

geolocation, etc., to do such computation.

So, when the transfer execution system is

invoked in order to execute the transfer, it is

unrealistic to expect it to reach out to the

fraud detection system, and then have that

reach out to the IdP and geolocation

services to compute all this in real-time. It

also doesn’t work because each system may

have differing availability and latency

characteristics.

Enterprise use case: An employee wishes to

make a change in the configuration of your

organization’s IaaS platform. This is a highly

sensitive change, so your organization has

decided that this should be allowed only ifx

There is a support case that is approved

for configuration changes in production{

The user is assigned as the engineer on

that case{

The user is currently on duty as an on-

call engineer.

The user is in the “site reliability

engineering” team that is permitted to

make such changes²

The user is not on leave at this time²

The user is coming from a PC that does

not have any incidents reported, and is in

good management posture²

All of these pieces of data are in different

systems (e.g.,ticketing system, on-call

scheduling system, enterprise directory, HR,

XDR, etc.). All of this data influences the

access decision.

Achieving continuous security

To achieve continuous security in a zero-trust

environment, you need to make these access

decisions for every access request at every node,

and you need to do that in a reliable, low-latency

way! Keep in mind that in large organizations,

individual systems may have hundreds of thousands

of access requests every second²

So, while it is impossible to rely on all this

distributed data to make such highly reliable, low-

latency access decisions, that doesn’t mean

continuous security is impossible to achieve. The

continuous security paradigm makes this possible.

The idea is actually quite simple:

Always make instantaneous access decisions

based on data available at the individual node. In

its simplest form, this can be validating an

access token.

Ensure that data required for making access

decisions at any node is available as soon as it

changes, regardless of which node that data

originates from. This can be achieved using

asynchronous communication of such changes.

If the data you have changes, you need to ensure

it is communicated to the nodes that need it in

order to make decisions.

https://sgnl.ai/

WHITEPAPER SGNL.AI

If you are simply relying on access tokens, you need to make sure that nodes that rely on the validity of the

access token know in advance if the access token should be considered invalid due to changes in other

systems (e.g.,a user being terminated). That way, when a user shows up with that token, it is immediately

discarded and access is denied.

Achieving continuous security

CSP envisions three planes:

Of this, the Control Plane and Events Plane can be implemented using SSF.

Control Plane
configuring the trust topology

Which events to receive from whom�

Which events to send to whom�

What is the frequency or urgency of communication?

Events Plane
asynchronous context propagation

Deliver events reliabl¨

Receive and acknowledge event receip¬

Verify stream liveness

Data Plane
real-time access decisions

Allow or deny access to specific resourceÎ

Provide low-latency response to access querieÎ

Ultra high reliability

The Continuous Security Paradigm

https://sgnl.ai/

WHITEPAPER SGNL.AI

06

Bringing CSP to reality: Implementing CAEP

Establishing the trust topology

To implement CSP, one needs to first establish the trust topology between the nodes in your network:

01

Which events need to be sent by a
particular node to another particular
node?

02

Which events should a particular
node expect from another particular
node?

03

How frequently should the events be
sent?

Determining events to send and receive: SSF

can help with the first two things¡

As an SSF Transmitter, you can specify which

events you support through the Transmitter

Configuration Metadat«

As an SSF Receiver, you can request the

creation of a stream from the Transmitter,

which specifies the types of events that you

want (i.e., the

parameter in the stream creation request.

The Transmitter will commit to sending a

subset of these events in the

 parameter of the

response. As an SSF Receiver, you can

decide whether or not the event set is

sufficient for you, or if you cannot continue.

If the event set is insufficient and you cannot

continue, then you should delete the stream

and take appropriate error handling steps.

events_requested

events_delivered

Establishing trust: A good way to protect the

SSF Transmitter API is by using OAuth. You can

configure your SSF Transmitter to trust an

OAuth Server, and specify the OAuth Server and

token scopes that you require in an “OAuth

Protected Resource Metadata” (OPRM)

document. See for more details. If you

are developing an SSF Receiver, then in order to

set up the trust, you need to obtain a token from

the OAuth server that you can present to the

Transmitter when making SSF API calls. This is

typically done in an admin console, where the

user who can obtain tokens with the appropriate

scopes from the OAuth server is already logged

into your SSF Receiver.

RFC 9728

Determining policy: CAEP is a non-prescriptive

standard. CAEP events signify changes at the

Transmitter, but do not command or instruct the

Receiver to take a specific action. This means

that the Receiver has to implement its own

policy to determine how to handle the events.

Part of establishing the trust topology is to

define what each node must do in response to

receiving a specific type of event from another

node. The policy may depend upon a number of

factors>

The event type

The sender of the even\

The subject of the even\

Other data related to the subject, event, and

the resources it might impact.

https://sgnl.ai/
https://datatracker.ietf.org/doc/html/rfc9728/

WHITEPAPER SGNL.AI

Sending events

As an SSF Transmitter, once you have committed to

sending events to a Receiver, you need to ensure the

timely delivery of events. You need to determine the

following�

How will you determine that an event needs to

be sent to a Receiver? Typically, you will have

internal event triggers (e.g.,an API method being

called, or an internal queue receives an item that

results in the need to send the event). However,

in some cases, you might have to monitor a data

source in order to determine whether a value has

changed and, as a result, it needs to be

communicated. In the latter case, you need to

establish a polling cadence in order to send

those events

You will need to determine a service level

objective (SLO) for when the events will be sent.

This SLO may or may not need to be

communicated to the Receiver, but it can be

something that you can use to monitor the

health of your Transmitter

Depending upon the delivery methods your

Transmitter supports, you will need to have the

appropriate queueing infrastructure for poll

delivery of events, or the appropriate retry logic

in case a push delivery fails.

Propagating events

An SSF Receiver may also generate events as a

result of receiving one. For example, if a policy

engine receives an event from an Extended

Detection and Response (XDR) system about an

increase in a user’s risk, it may generate session

revocation events to all applications that depend on

it for such signaling. Some of those applications

may generate events of their own in response, so

one has to make sure that any node in the network

doesn’t take multiple actions in response to the

same originating event. This is achieved through

correlating the claim in SSF events. If your node

generates events in response to receiving an event,

then you must copy the value from the

incoming event to the outgoing events you

generate. As a result, if you receive an event with a

 value that you have already processed, you do

not need to process that event.

txn

txn

txn

Receiving events

As an SSF Receiver, you need to ensure that you can

reliably receive events and take the appropriate

action upon receiving them. The receipt of the event

serves as the internal trigger for other actions that

you need to take, e.g.,updating a database or cache.

You need to respond appropriately to the

Transmitter to indicate that you have received the

event. You need to ensure an audit mechanism to

verify that you have processed every event that you

have received, in order to make sure that incoming

events aren’t being dropped. This can be a good

measure to monitor your service’s health

You should also request verification events

periodically to monitor the stream liveness. You can

provide appropriate alerting if the stream is

determined to be no longer active.

https://sgnl.ai/

WHITEPAPER SGNL.AI

07

Common use cases
There are a number of use cases being implemented in the industry today. They include:

Session revocation

An application or an identity service (such as a

single sign-on identity provider, a policy engine,

or an Identity Governance and Administration

(IGA) service) may communicate that a particular

user or a particular session of a user is terminated

at their end, as indicated by the subject of the

event. The Receiver of the event may@

Terminate their sessions for the same user or

if they can, terminate the specific sessionT

Evaluate whether the user’s session needs to

be terminated based on other data that they

have received about the user. This can happen

when an application indicates abnormal

activity to a policy engine, and the policy

engine evaluates whether similar activity,

device risks, or user risks have been flagged

by other services for the same user. Based on

the result of the evaluation, the Receiver may

terminate their own session, and transmit

session revocation events to other Receivers.

Device compliance change

Services that manage devices for users on behalf

of their employers watch those devices for

compliance with the enterprise policy. Devices

managed using such services typically

periodically check in with the service, whereby

the service can check the device “posture”. A

posture that violates policy is understood by the

device management service at the time of check-

in, or if the device fails to check in. Using the

CAEP event, the

device management service can signal both the

change of a device from being compliant to non-

compliant or vice-versa. The subject of this event

could just be the user (in which case it is assumed

to apply to all devices the user is using), or it

might include a specific device (either in addition

to or instead of the user identity). The Receivers

of this event may@

Terminate user access to their service, or

device-compliance-change

Permit only limited access until the device

becomes compliant againT

A Receiver may be informed of the user’s device

being used in the session at the time of session

establishment. In this case, the Receiver can

correlate the device identifier in the

 event subject to the identifier

it has. If not, the Receiver can take a defensive

position of assuming the user’s device (which is

unknown to the Receiver) has become non-

compliant. To ascertain compliance again, the

Receiver in that case will have to re-authenticate the

user, with the assumption that the identity provider

will verify the device compliance at the time of re-

authentication.

device-

compliance-change

Credential change

A user may change their password or change the

strong authentication mechanism, device, or phone

number. Any of these events can result in the

service managing the user’s credential (typically the

identity provider, or credential provider) can signal

the CAEP . Receivers

of this event may@

Force the user to re-authenticatö

Permit limited access until the user re-

authenticates

credential-change event

Risk level change

An application being used by the user, a monitoring

service, or an XDR service can detect that the user’s

risk has changed. This could be based on a variety of

factors, such as user behavior, device risk,

environmental risk (i.e., the user is in an untrusted

location), etc. The service that detects such change

can send the event. A Receiver

may take appropriate action, such as@

Terminate the user sessio(

Permit limited acces-

Add the event to its own risk assessment, and

determine the appropriate action on cumulative risk

risk-level-change

https://sgnl.ai/

WHITEPAPER SGNL.AI

08

Example: Implementing
session revocation in an
application

Application description

An application is composed of a globally distributed

set of nodes. It uses access tokens as a means of

authenticating users. The access tokens identify the

user and their permissions within the application.

The application uses an external IdP to issue ID

Tokens, which it then converts to its own access

tokens for session identification. The application

does not persist a list of logged-in users in its

database, but assumes that anyone presenting a

valid access token is logged in (as long as the token

has not expired). The following picture illustrates

the application architecture:

App instance

App instance

App instance

App instance

Region 1

Region 3

Region 2

In the above diagram, the same user may at one

point in time access an app instance in one region,

whereas at some other point in time might access

an app instance in another region.

Session revocation event

The IdP supports CAEP and sends a

 event to the application when a

user’s session is revoked at the IdP. The application

policy is to revoke its local session when that

happens. The content of the session revoked event

from the IdP is:

session_revoked

JSON

¶

: «

: «

: 1615305159«

: «

: «

: ¶

: «

:

 }ª

: ¶

: ¶

: ¶

:

}«

161530499´

 ¦

 ¦

}

 "iss"

 "jti"

 "iat"

 "aud"

 "txn"

 "sub_id"

 "format"

 "email"

 "events"

 "https://schemas.openid.net/secevent/

caep/event-type/session-revoked"

 "reason_admin"

 "en"

 "event_timestamp":

"https://idp.example.com/12345/"

"24c63fb56e5a2d77a6b512616ca9fa24"

"https://myorg.example/caep"

"8675309"

"email"

"user@idp.example'

"Policy Violation: C076E822"

https://sgnl.ai/

WHITEPAPER SGNL.AI

Architecture for handling session revocation events

Since the application has no persistent record of a user logging in, when the application receives the

 event, it has no way to correlate that with existing login sessions. To ensure it can

revoke live sessions, it creates a distributed cache, which has a read replica at every node where the

application is running. It has one main replica where it receives CAEP events. This is propagated to all the

read replicas to achieve eventual consistency$

This architecture is described below.

session_revoked

App instance
Cache read replica

Cache read replica
App instance

App instance

App instance

Region 1

Region 3

Region 2

Cache read replica
Cacheh
maim
replica

App’z
CAEt
receiver

As seen in the diagram above, the CAEP Receiver (an SSF Receiver used to receive CAEP events) of the

application inserts the received event into the main replica of the cache. This gets propagated to the read

replicas as soon as possible to reach eventual consistency. Each entry in the cache can be the entire

 event, or it could be just the relevant portion of the event, which is the “issued at time”

and the subject identifier. For example, the cache item can be:

session_revoked

JSON

»

: 1615305159³

:

}

 "iat"

 "id" "user@idp.exampleÏ

https://sgnl.ai/

WHITEPAPER SGNL.AI

08

Application logic

When any node within the application receives an

access token, it verifies that the local copy of the

cache does not contain an event for that user. If it

does, then it compares the “issued at time” of the

access token with the of the cache entry. If the

access token is older than the entry in the cache,

then it rejects the request as unauthorized. The

normal application logic for handling unauthorized

users then kicks in to guide the user through the

login process again.

iat

Extending to other event types

The above example illustrates how session

revocation may be implemented. To extend to other

event types, say the application’s permissions need

to be changed based on a

event received from an IdP, then the architecture

and logic remain the same, but the cache entries are

extended to contain an “event type”, and the

relevant details (e.g.,updated permissions) that are

specific to that event type. So an entry created as a

consequence of receiving a

 event can be:

token_claims_change

token_claims_change

JSON

�

: 1615305159�

: �

 : �

: [�

�

}

 "iat"

 "id"

 "https://schemas.openid.net/secevent/caep/

event-type/token-claims-change"

 "permissions" ,

"user@idp.example"

"admin" "user"

After this is implemented, the application will

override any permissions within the access token

with the permissions defined in the cache, if a cache

entry is found. That way, if the user’s permissions

have changed within the duration of a session, the

updated permissions will be effective

instantaneously across the application.

https://sgnl.ai/

About SGNL

SGNL is the only enterprise platform purpose-built for Continuous

Identity—trusted by Fortune 500 enterprises worldwide to eliminate

standing access to cloud environments, code, and critical

applications�

SGNL delivers continuous, context-aware protection for sensitive

data, infrastructure, cloud workloads, and applications, and now

extends that protection to AI through the SGNL MCP Security

Gateway—enforcing real-time policies on AI agent actions. By

centralizing context, real-time enforcement, and enterprise-wide

orchestration through open standards like CAEP and the Shared

Signals Framework, SGNL enables Zero Standing Privilege across

the entire identity footprint and makes Zero Trust an operational

reality.

Request a demo

SGNL named a Cool Vendor in the 2025 Gartner®

Cool Vendors™ in Identity-First Security

Gartner, Cool Vendors in Identity-First Security, 24 October 202�

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates

in the U.S. and internationally and is used herein with permission. All rights reserved.

https://sgnl.ai/demo/

